skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dong, Xi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> The entanglement negativity$$ \mathcal{E} $$ E (A:B) is a useful measure of quantum entanglement in bipartite mixed states. In random tensor networks (RTNs), which are related to fixed-area states, it was found in ref. [1] that the dominant saddles computing the even Rényi negativity$$ {\mathcal{E}}^{(2k)} $$ E 2 k generically break theℤ2kreplica symmetry. This calls into question previous calculations of holographic negativity using 2D CFT techniques that assumedℤ2kreplica symmetry and proposed that the negativity was related to the entanglement wedge cross section. In this paper, we resolve this issue by showing that in general holographic states, the saddles computing$$ {\mathcal{E}}^{(2k)} $$ E 2 k indeed break theℤ2kreplica symmetry. Our argument involves an identity relating$$ {\mathcal{E}}^{(2k)} $$ E 2 k to thek-th Rényi entropy on subregionABin the doubled state$$ {\left.|{\rho}_{AB}\right\rangle}_{A{A}^{\ast }{BB}^{\ast }} $$ ρ AB A A BB , from which we see that theℤ2kreplica symmetry is broken down toℤk. Fork< 1, which includes the case of$$ \mathcal{E} $$ E (A:B) atk= 1/2, we use a modified cosmic brane proposal to derive a new holographic prescription for$$ {\mathcal{E}}^{(2k)} $$ E 2 k and show that it is given by a new saddle with multiple cosmic branes anchored to subregionsAandBin the original state. Using our prescription, we reproduce known results for the PSSY model and show that our saddle dominates over previously proposed CFT calculations neark= 1. Moreover, we argue that theℤ2ksymmetric configurations previously proposed are not gravitational saddles, unlike our proposal. Finally, we contrast holographic calculations with those arising from RTNs with non-maximally entangled links, demonstrating that the qualitative form of backreaction in such RTNs is different from that in gravity. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. A<sc>bstract</sc> Spacetime wormholes can provide non-perturbative contributions to the gravitational path integral that make the actual number of stateseSin a gravitational system much smaller than the number of states$$ {e}^{S_{\textrm{p}}} $$ e S p predicted by perturbative semiclassical effective field theory. The effects on the physics of the system are naturally profound in contexts in which the perturbative description actively involvesN=O(eS) of the possible$$ {e}^{S_{\textrm{p}}} $$ e S p perturbative states; e.g., in late stages of black hole evaporation. Such contexts are typically associated with the existence of non-trivial quantum extremal surfaces. However, by forcing a simple topological gravity model to evolve in time, we find that such effects can also have large impact forN≪eS(in which case no quantum extremal surfaces can arise). In particular, even for smallN, the insertion of generic operators into the path integral can cause the non-perturbative time evolution to differ dramatically from perturbative expectations. On the other hand, this discrepancy is small for the special case where the inserted operators are non-trivial only in a subspace of dimensionD≪eS. We thus study this latter case in detail. We also discuss potential implications for more realistic gravitational systems. 
    more » « less
  3. A<sc>bstract</sc> We propose a new formula for computing holographic Renyi entropies in the presence of multiple extremal surfaces. Our proposal is based on computing the wave function in the basis of fixed-area states and assuming a diagonal approximation for the Renyi entropy. For Renyi indexn≥ 1, our proposal agrees with the existing cosmic brane proposal for holographic Renyi entropy. Forn <1, however, our proposal predicts a new phase with leading order (in Newton’s constantG) corrections to the cosmic brane proposal, even far from entanglement phase transitions and when bulk quantum corrections are unimportant. Recast in terms of optimization over fixed-area states, the difference between the two proposals can be understood to come from the order of optimization: forn <1, the cosmic brane proposal is a minimax prescription whereas our proposal is a maximin prescription. We demonstrate the presence of such leading order corrections using illustrative examples. In particular, our proposal reproduces existing results in the literature for the PSSY model and high-energy eigenstates, providing a universal explanation for previously found leading order corrections to then <1 Renyi entropies. 
    more » « less
  4. A<sc>bstract</sc> In AdS/CFT, observables on the boundary are invariant under renormalization group (RG) flow in the bulk. In this paper, we study holographic entanglement entropy under bulk RG flow and find that it is indeed invariant. We focus on tree-level RG flow, where massive fields in a UV theory are integrated out to give the IR theory. We explicitly show that in several simple examples, holographic entanglement entropy calculated in the UV theory agrees with that calculated in the IR theory. Moreover, we give an argument for this agreement to hold for general tree-level RG flow. Along the way, we generalize the replica method of calculating holographic entanglement entropy to bulk theories that include matter fields with nonzero spin. 
    more » « less
  5. A bstract We prove the equivalence of two holographic computations of the butterfly velocity in higher-derivative theories with Lagrangian built from arbitrary contractions of curvature tensors. The butterfly velocity characterizes the speed at which local perturbations grow in chaotic many-body systems and can be extracted from the out-of-time-order correlator. This leads to a holographic computation in which the butterfly velocity is determined from a localized shockwave on the horizon of a dual black hole. A second holographic computation uses entanglement wedge reconstruction to define a notion of operator size and determines the butterfly velocity from certain extremal surfaces. By direct computation, we show that these two butterfly velocities match precisely in the aforementioned class of gravitational theories. We also present evidence showing that this equivalence holds in all gravitational theories. Along the way, we prove a number of general results on shockwave spacetimes. 
    more » « less
  6. Black holes provide a window into the microscopic structure of spacetime in quantum gravity. Recently the quantum information contained in Hawking radiation has been calculated, verifying a key aspect of the consistency of black hole evaporation with quantum mechanical unitarity. This calculation relied crucially on recent progress in understanding the emergence of bulk spacetime from a boundary holographic description. Spacetime wormholes have played an important role in understanding the underpinnings of this result, and the precision study of such wormholes, in this and other contexts, has been enabled by the development of low-dimensional models of holography. In this white paper we review these developments and describe some of the deep open questions in this subject. These include the nature of the black hole interior, potential applications to quantum cosmology, the gravitational explanation of the fine structure of black holes, and the development of further connections to quantum information and laboratory quantum simulation. 
    more » « less
  7. A bstract Since the work of Ryu and Takayanagi, deep connections between quantum entanglement and spacetime geometry have been revealed. The negative eigenvalues of the partial transpose of a bipartite density operator is a useful diagnostic of entanglement. In this paper, we discuss the properties of the associated entanglement negativity and its Rényi generalizations in holographic duality. We first review the definition of the Rényi negativities, which contain the familiar logarithmic negativity as a special case. We then study these quantities in the random tensor network model and rigorously derive their large bond dimension asymptotics. Finally, we study entanglement negativity in holographic theories with a gravity dual, where we find that Rényi negativities are often dominated by bulk solutions that break the replica symmetry. From these replica symmetry breaking solutions, we derive general expressions for Rényi negativities and their special limits including the logarithmic negativity. In fixed-area states, these general expressions simplify dramatically and agree precisely with our results in the random tensor network model. This provides a concrete setting for further studying the implications of replica symmetry breaking in holography. 
    more » « less
  8. A bstract We continue the study of real-time replica wormholes initiated in [1]. Previously, we had discussed the general principles and had outlined a variational principle for obtaining stationary points of the real-time gravitational path integral. In the current work we present several explicit examples in low-dimensional gravitational theories where the dynamics is amenable to analytic computation. We demonstrate the computation of Rényi entropies in the cases of JT gravity and for holographic two-dimensional CFTs (using the dual gravitational dynamics). In particular, we explain how to obtain the large central charge result for subregions comprising of disjoint intervals directly from the real-time path integral. 
    more » « less
  9. null (Ed.)
    A bstract This work is the first step in a two-part investigation of real-time replica wormholes. Here we study the associated real-time gravitational path integral and construct the variational principle that will define its saddle-points. We also describe the general structure of the resulting real-time replica wormhole saddles, setting the stage for construction of explicit examples. These saddles necessarily involve complex metrics, and thus are accessed by deforming the original real contour of integration. However, the construction of these saddles need not rely on analytic continuation, and our formulation can be used even in the presence of non-analytic boundary-sources. Furthermore, at least for replica- and CPT-symmetric saddles we show that the metrics may be taken to be real in regions spacelike separated from a so-called ‘splitting surface’. This feature is an important hallmark of unitarity in a field theory dual. 
    more » « less